May 15, 2023 | 6:00 pm
City Hall | Council Chambers
Public Meeting participation in person or via phone Call in \#515-726-3598 Participant Code 535355
Public Members can provide comments directly to support@polkcityia.gov
*any comments received before the time of the meeting will be made a part of the minutes
IF YOU WISH TO ADDRESS THE COMMISSION DURING THE MEETING please contact the City Clerk by $6 p m$ on the date of the meeting by email at jcoffin@polkcityia.gov with your name and address for the record. You will be recognized for five minutes of comment.

Broadcast live and playback will be available at https://www.youtube.com/c/polkcityiagovchannel
$* *$
Tentative Meeting Agenda
Deanna Triplett \mid Chair
Justin Vogel | Vice Chair
P\&Z Commission Members: Ron Hankins | Krista Bowersox | Doug Ohlfest | Amber Pringnitz | Doug Sires

1. Call to Order
2. Roll Call
3. Approval of Agenda
4. Public Comments
5. Approval of P\&Z Commission Meeting minutes for April 17, 2023
6. Recommend Council approve the Plat of Survey and Site Plan for Ace Hardware
7. Reports \& Particulars

Council Liaison, City Manager, Staff, and Commission
8. Adjourn until June 19, 2023

MEETING MINUTES
 The City of Polk City
 Planning and Zoning Commission 6:00 p.m., Monday, April 17, 2023

Polk City, Planning and Zoning Commission (P\&Z) held a meeting at 6:00 p.m., on April 17, 2023, in City Hall Council Chambers. The agenda was posted at the City Hall office as required by law.
These tentative minutes reflect all action taken at the meeting.

1. Call to Order | Vice Chair Vogel called the meeting to order at $6: 00 \mathrm{p} . \mathrm{m}$.
2. Roll Call | Hankins, Bowersox, Vogel, Triplett (joined via zoom 6:05pm), Ohlfest, Pringnitz, Sires | In attendance

3. Approval of Agenda

MOTION: A motion was made by Hankins and seconded by Pringnitz to approve the agenda.
MOTION CARRIED UNANIMOUSLY

4. Public Comments | None

5. Approval of Meeting Minutes

MOTION: A motion was made by Bowersox and seconded by Pringnitz to approve P\&Z Commission Meeting Minutes for March 20, 2023.

MOTION CARRIED UNANIMOUSLY

6. MOTION: A motion was made by Hankins and seconded by Sires to recommend Council approve the Site Plan for On With Life subject to Engineering and Staff comments and recommendations dated April 13, 2023.
MOTION CARRIED UNANIMOUSLY
7. MOTION: A motion was made by Hankins and seconded by Ohlfest to recommend Council approve the consolidation of the current $\mathrm{U}-1$ to GF zoning districts into a new GF-1 zoning district

MOTION CARRIED UNANIMOUSLY

8. Reports \& Particulars

- Council Member Dvorak thanked the P\&Z Members for their work on the commission
- City Manager Huisman said although the City continues to receive inquiries about the Commercial lot near S $3^{\text {rd }}$ Street and Hickory Way, the City has yet to receive any submittals regarding a site plan there
- Commission Member Sires asked about the City-Wide Clean-Up event and City Clerk Coffin reported that it is scheduled for April $24^{\text {th }}$. Sires asked for a report on the Downtown Assessment and City Manager Huisman provided details regarding the Iowa Economic Development Association (IEDA) involvement and process. She indicated that she would share the final report with the commission once it is received in the next couple of months and also thanked Sires and Ohlfest for participating.

9. Adjournment

MOTION: A motion was made by Bowersox and seconded by Ohlfest to adjourn at 6:29 p.m.
MOTION CARRIED UNANIMOUSLY
Next Meeting Date - Monday May 15, 2023

Attest:

[^0]
SITE PLAN REVIEW

Date:
Project: Ace Hardware Site Plan
GENERAL INFORMATION:

Owner/ Applicant:	Kimberley Development Corp.
Requested Action:	Approval of Site Plan and POS
Location	Outlot Z, Crossroads at the Lakes Plat 1
Size:	2.113 acres
Zoning:	Planned Unit Development (PUD)
Proposed Use:	Hardware and Paint Store

Prepared by: Kathleen Connor Travis Thornburgh, P.E.
Project No.: $\quad 123.0568 .01$

BACKGROUND:

The subject property was rezoned to Planned Unit Development (PUD) on June 13, 2016. A Revised P.U.D. Master Plan for Crossroads at the Lakes was approved on October 13, 2017 which defined this property as Lot 83. Per the Revised P.U.D. Master Plan, Lot 83 shall comply with all C-2 regulations, except as follows:

- Automotive sales, service, and repairs; car washes, adult entertainment, convenience stores, gas stations and lumber yards are not permitted uses on this lot.
- Offices and/or residential uses are permitted on the second floor of this lot.
- A 30' buffer is required on the eastern and northern property line of this lot.
- A landscape buffer consisting of a berm with trees and shrubs, along with a 20 ' parking setback north of the back of curb, shall be provided to screen the commercial building from the townhomes south of Hickory Way,

The subject property was later platted as Outlot Z of Crossroads at the Lakes Plat 1 which requires the developer to replat the property in order to create a buildable lot. Plat improvements included construction of Hickory Way and Willow Way, both as private streets. Plat 1 also included extension of public water mains, sanitary sewers, and storm sewers along with a storm water management facility that serves the entire subdivision.

DESCRIPTION:

On behalf of Ace Hardware, Kimberley Development Corp. proposes construction of a new retail building to be located on the Outlot in front of Crossroads Townhomes on S. $3^{\text {rd }}$ Street. The project will include a one-story building, facing S. $3^{\text {rd }}$ Street, that is $15,200 \mathrm{sq}$. ft. in size. The building will be constructed of a combination of brown-tone brick and dry-vit that will need to conform to the Architectural Design Standards' requirement for 60% brick on the west side, facing the public street, and 50% brick on the north, south, and east sides.
The developer proposes outdoor merchandising areas along the west side of the proposed building. These outdoor merchandising areas will contain a propane exchange area along with lawn care, landscape products, snow maintenance products, and similar seasonal items.

The parking lot will have access from both Willow Way and Hickory Way. Parking will be provided on three sides of the building.
The 10' wide trail has been already been paved along S. $3^{\text {rd }}$ Street and a 4 ' sidewalk will be constructed along Willow Way to provide connectivity for the townhomes. Buffer trees will be planted in the existing 30 ' wide buffer easement on the north and east side of this parcel. Additional trees will be planted along both streets and on the east side of the parking lot. Existing trees will be protected within the 30^{\prime} landscape buffer easement adjacent to the townhomes in Crossroads at the Lakes Plat 1.

Detention has been provided in the existing basins that serve all of the Crossroads at the Lakes subdivision. Water service and sanitary sewer service was extended to the site as part of the Crossroads at the Lakes Plat 1 development. Private storm sewers were constructed with said plat to provide access to the storm water management facility.
REVIEW COMMENTS: Pursuant to our review of Submittal \#3 of the Plat of Survey and Site Plan for conformance to applicable city code, we offer the following comments.

1. Provide shrubs on the south side of the parking lot, west of the Hickory Way driveway, to provide screening for the townhomes on the south, particularly since the berm is only one foot high in this area.
2. On the photometric plan, please revise the mounting height of the parking lot lights to be no more than 20^{\prime}. Revise lighting calculations as required.

RECOMMENDATION:

Based on the satisfactory resolution of each of the above Review Comments, staff recommends approval of the Site Plan and Plat of Survey for Ace Hardware, subject to:

1. Planning \& Zoning Commission recommendations, if any, shall be addressed prior to this Site Plan or Plat of Survey moving forward to Council.
2. No temporary or permanent Certificate of Occupancy will be issued for Ace Hardware until all site plan elements are complete, including landscaping, or an Agreement to Complete with surety is supplied to the City.
3. Payment in full of all fees to the City of Polk City.

INDEX LEGEND
 4121 NW URBANDALE DRIVE URBANDALE, IOWA 50322 PH:515-369-4400

SITE PLAN FOR:

ACE HARDWARE

825 S. 3RD STREET, POLK CITY, IOWA

POLK CITY, IOWA
OWNER / DEVELOPER
KMMEREEY DEVELOPMENT CORPORATON
CONTACT:
JORRAN KRAMER

ENGINEER

SURVEYOR

DATE OF SURVEY
BENCHMARKS

CONSTRUCTION SCHEDULE

SUBMITTAL DATES

04/19/2023
o5
$05 / 11 / 202023$

LEGAL DESCRIPTION

ZONING
P.U.D. IN ACCORDANCE MTH THE REVSED P.U.D. MASTER PLAN
FOR CROSSROAOS AT THE LAKES.

NOTES SIL PARCL SSAL COMPY WTH ALI C-2 REEUAATON

PROJECT SITE ADDRESS
DEVELOPMENT SUMMARY
AREA: 2.11 ACRES (92,061 SF)
setracks:

$\frac{\text { OPEN SPACF REQURED: }}{13,810 \text { SF (155) }}$
$\frac{\text { OPEN SPACE CALCULATON: }}{\text { OTAL STIE }}$

$\begin{array}{ll}\text { OREN SPACE PROVIDED } & =56,455 \mathrm{SF} \\ \text { SF (39\%) }\end{array}$
$\stackrel{\text { PRNCPAL USE: }}{\text { HAROWARE AND PANT Retall store }}$

$\frac{\text { NUMBER OF STORESS. }}{1 \text { ISTORY BULIDING }}$

$\frac{\text { BULDNG HEGHT: }}{22^{2}-\mathrm{O}^{\circ}}$ (TOP OF PARAPHET WALL)
$\underset{\text { BuLDMG Footrpint: }}{\text { TOAL BULDING }}$ \qquad

$\frac{\text { TOTAL REOUBED: }}{15,380 \text { SF } / 400 ~ S F}=39$ SPACES
TOTAL PROVOED.
$=71$ SPACES (3 ADA SPACES)
NOTES

CIVIL DESIGN ADVANTAGE
4121 NW URBANDALE DRIVE, URBANDALE, IOWA 50322
PH: 51515) $369-4400$ Fax: (515) $369-4410$
$\begin{aligned} & \text { PH: (515) } 369-4400 \text { Fax: } \\ & 2212.847\end{aligned}$

12. Eximicisioi

14.

ACE HARDWNARE

EROSION AND SEDIMENT CONTROL PLAN

DISCHARGE POINT SUMMARY

NOTES:

${ }^{2}$.

SWPPP LEGEND
oranage arrow
oraing limis
FLTTER sock
sLT Fence
inet protection
portable restroom
,

${ }^{x \times x \times \%}$	UnoIsturbed area	0
	RP-RAP	F3
0	gravel entrance	,
R	staging area	\#\#\#
	CONCREEE WASHOUT P	+

egeriliser, maery

LUMINAIRE SCHEDULE											
amoor	srumat	unf	Dssocrurnow	${ }_{\text {atuser }}$	wowni	noors	most	$\underset{\text { mam }}{\text { maxam }}$	vours	manr	
am	-	(1)		rawc	counc		pexemesit--ax	${ }^{241}$		${ }^{18}$	
s1	$\bigcirc \square$	(1)		accemenc	cume	Huthab inh ox lix		50.9	${ }^{12001 \mathrm{IP} 24^{20}}$	2	$23-0$
sen	$\bigcirc \square$	${ }^{(1)}$			counc			s.009	${ }^{120017201}$	-	${ }^{23-0}$
sm	-	(1)			ranc		Hemome wime wx Lo	${ }^{1.19}$	${ }^{2001} 1 \mathrm{P}_{20}$,	${ }_{12-0}$

d"series

Gabeg	
${ }^{\text {nites }}$	ACE HARDWARE POLK CITY
Fipe	XP1, XP1A

Introduction

The modern styling of the D-Series features a highly refined aesthetic that blends seamlessly with its environment. The D-Series offers the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire.

The photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. D-Series outstanding photometry aids in reducing the number of poles required in area lighting applications with typical energy savings of 65% and expected service life of over 100,000 hours.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Ordering Information} \& \multicolumn{7}{|r|}{EXAMPLE: DSX1 LED P7 40K 70CRI T3M MVOLT SPA NLTAIR2 PIRHN DDBXD} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
DSX1 LED \\
Series
\end{tabular}} \& P1 \& 40K \& 70CRI \& \multicolumn{3}{|l|}{T2M} \& MVOLT \& \multicolumn{2}{|l|}{SPA} \\
\hline \& LEDS \& Color temperature \({ }^{2}\) \& \[
\begin{aligned}
\& \text { Color Rendering } \\
\& \text { Index }
\end{aligned}
\] \& \multicolumn{3}{|l|}{Distribution} \& Voltage \& \multicolumn{2}{|l|}{Mounting} \\
\hline DSX1 LED \& \begin{tabular}{ll}
Forward optics \\
P1 \& P6 \\
P2 \& P7 \\
P3 \& P8 \\
P4 \& P9 \\
P5 \& \\
Rotated optics \\
P10' \& P12' \\
P11' \& P13'
\end{tabular} \& \begin{tabular}{l}
(this section 70CRI only) \\
30K 3000K \\
40K 4000K \\
50K 5000K \\
(this section 80CRI only, extended lead times apply) \\
27K 2700K \\
30K 3000 K \\
35K 3500K \\
40K 4000 K \\
50K 5000K
\end{tabular} \& 70 CRI
70 RL
70 CRI

80 CR
80 CR
80 CR
80 RI

80 CRI \& | T1S Type I short |
| :--- |
| T2M Type Il medium |
| T3M Type Ill medium |
| T3LG Type III Iow glare ${ }^{3}$ |
| T4M Type IV medium |
| T4LG Type IV low glare |
| TFTM Forward throw medium | \& TSM

TSLG
TSW
BLC
BLC4
LCC0

RCCO \& \begin{tabular}{l}
Type V medium

Type V Iow glare

Type V wide

Type III backlight control ${ }^{3}$

Type IV backlight control ${ }^{3}$

Left corner cutoff ${ }^{3}$

Right corner cutoff ${ }^{3}$

 \& \& \&

edinculued

Square pole mounting (\#8 drilling)

Round pole mounting (\#8 drilling)

Square pole mounting \#5 drilling ${ }^{9}$

Round pole mounting \#5 drilling ${ }^{9}$

Square narrow pole mounting \#8 drilling Wall bracket ${ }^{10}$ Mast arm adapter (mounts on 23/8" OD horizontal tenon)
\end{tabular}

\hline \& \& \& \& \& HS (W \& HERE \& PPLIC) \& DDBXD \&

\hline \multicolumn{5}{|l|}{Control options} \& \multicolumn{3}{|l|}{other options} \& \multicolumn{2}{|l|}{Finish (requiect}

\hline \multicolumn{3}{|l|}{Shipped installed} \& \& \multirow[t]{2}{*}{Seven-pin receptacle only controls ordered separate) ${ }^{1421}$} \& \multicolumn{3}{|l|}{Shipped installed} \& \multicolumn{2}{|l|}{Dobx Darkkronze}

\hline \multirow[t]{3}{*}{NLARR2PRRH} \& \multicolumn{2}{|l|}{\multirow[t]{3}{*}{NN LLight AIR gen 2 enabled with bi-level motion / ambient sensor, $8-40^{\prime}$ mounting height, ambient sensor enabled at 2fc. 11, 1,2,20,2}} \& \multirow[b]{2}{*}{fao fild} \& \& SpP2okv \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{| 20KV surge protection |
| :--- |
| Houseside shield (black finish standard) ${ }^{2}$ |}} \& \multirow[t]{2}{*}{$\begin{array}{ll}\text { DBLXD } & \text { Bla } \\ \text { DNAXD } & \text { Na }\end{array}$} \&

\hline \& \& \& \& Field djustable output ${ }^{1521}$ \& \multirow[t]{2}{*}{HS} \& \& \& \& Natural Aluminum

\hline \& \& \& \multirow[b]{2}{*}{${ }^{\text {BLI5 }}$ Bi-} \& \multirow[t]{2}{*}{Bi-evereswithed dimming, $30 \% 1671$} \& \& \multicolumn{2}{|l|}{Leftrotated opicis'} \& DWHXD W \& White

\hline PIR \& \multicolumn{2}{|l|}{High/low, motion/ambient sensor, 8-40'mounting height, ambient sensor enabled at $2 f f_{c}^{13,20,2}$} \& \& \& 190
R90 \& \multicolumn{2}{|l|}{Rightrotated optics'} \& \multicolumn{2}{|l|}{DDBTXD Textured dakk bonze}

\hline \multirow[t]{2}{*}{PER} \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{NEMA twist-lock receptacle only controls ordered separate) $)^{4}$}} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{$0-10 \mathrm{v}$ dimming wires pulled outside fxture for use with an external Control, ordered separately "|} \& CCE \& Cossal Constuction \& \& DBLBXD Ter \& extured black

\hline \& \& \& \& \& \& $50^{\circ} \mathrm{Cambientoperati}$ \& \& \multirow[t]{3}{*}{DWHGXD Tex} \& extured natural duminum

\hline \multirow[t]{2}{*}{PER5} \& \multicolumn{2}{|l|}{Five-pin receparce only (controlo ordered separate) ${ }^{42,2}$} \& \multirow[t]{2}{*}{dS Du} \& \multirow[t]{2}{*}{Dual swithing ${ }^{\text {R18,2,] }}$} \& \multicolumn{3}{|l|}{Shipped separately} \& \& Extured white

\hline \& \multicolumn{2}{|l|}{} \& \& \& EGSR
BSDB \& \multicolumn{2}{|l|}{External Glare Shield (reversible, field install required, matches housing finish) Bird Spikes (field install required)} \& \&

\hline
\end{tabular}

Ordering Information

Accessories

Ordered and shipped separately
DLL127F $1.5 \mathrm{JU} \quad$ Photocell - SSL twist-lock (120-277V) ${ }^{25}$ DLL347F 1.5 CUL JU Photocell - SSL twist-lock (347V) ${ }^{25}$
DLL480F 1.5 CUL JU Photocell - SSL twist-lock (480V) ${ }^{25}$
DSHORTSBK

DSX1HS P\# DSXRPA (FINISH) DSXSPA5 (FINISH) DSXRPA5 (FINISH) DSX1EGSR (FINISH) DSX1BSDB (FINISH)

Shorting cap ${ }^{25}$
House-side shield (enter package number 1-13 in place of \#)
Round pole adapter (\#8 drilling, specify finish)
Square pole adapter \#5 drilling (specify finish) Round pole adapter \#5 drilling (specify finish) External glare shield (specify finish Bird spike deterrent bracket (specify finish)

NOTES

1 Rotated optics available with packages P10, P11, P12 and P13. Must be combined with option L90 or R90.
$230 \mathrm{~K}, 40 \mathrm{~K}$, and 50 K available in 70 CRI and 80 CRI . 27 K and 35 K only available with 80 CRI . Contact Technical Support for other possible combinations
3 T3LG, T4LG, BLC3, BLC4, LCCO, RCCO not available with option HS.
4 MVOIT driv,
5 HVOLT driver
6 HVOLT not available with package P1 and P10 when combined with option NLTAIR2 PIRHN or option PIR
7 XVOLT operates with any voltage between 277 V and $480 \mathrm{~V}(50 / 60 \mathrm{~Hz})$.
7 XVOLT operates with any voltage between 27
9 SPA5 and RPA5 for use with \#5 drilling only (Not for use with \#8 drilling).
9 SPA5 and RPA5 for use with \#5 drilling only (Not for use with \#8 drilling).
10 WBA cannot be combined with Type 5 distributions plus photocell (PER).
10 WBA cannot be combined with Type 5 distributions plus photocell (PER).
11 NLTAIR2 and PIRHN must be ordered together. For more information on nLight AIR2 visit this link
12 NLTAIR2 PIRHN not available with other controls including PIR, PER, PER5, PER7, FAO, BL30, BL50, DMG and DS. NLTAIR2 PIRHN not available with P1 no using HVOLT. NLTAR2
13 PIR not available with NLTAIR2 PIRHN, PER, PER5, PER7, FAO BL30, BL50, DMG and DS. PIR not available with P1 and P10 using HVOLT. PIR not available
with P1 and P10 using XVOLT. 4PER/PER5/PER7 not
14 PER/PER5/PER7 not available with NLTAIR2 PIRHN, PIR, BL30, BL50, FAO, DMG and DS. Photocell ordered and shipped as a separate line item from Acuity Brands Controls. See accessories. Shorting Cap included
15 FAO not available with other dimming control options NLTAIR2 PIRHN, PIR, PER5, PER7, BL30, BL50, DMG and DS
16 BL30 and BL50 are not available with NLTAIR2 PIRHN, PIR, PER, PER5, PER7, FAO, DMG and DS.
17 DMG not available with NLTAIR2 PIRHN, PIR, PER, PER5, PER7, BL30, BL50, FAO and DS.
18 DS not available with NLTAIR2 PIRHN, PIR, PER, PER5, PER7, BL30, BL50, FAO and DMG.
19 DS requires (2) separately switched circuits. DS provides 50/50 fixture operation via (2) different sets of leads using (2) drivers. DS only available with packages P8, P9, P10, P11, P12 and P13.
20 Reference Motion Sensor Default Settings table on page 4 to see functionality
11 Reference Controls Options table on pag
22 HS not available with T3LG, T4LG, BLC3, BLC4, LCCO and RCCO distribution. Also available as a separate accessory; see Accessories information 23 CCE option not available with option BS and EGSR. Contact Technical Support for availability
24 Option HA not available with performance packages P4, P5, P7, P8, P9 and P13
25 Requires luminaire to be specified with PER, PER5 or PER7 option. See Controls Table on page 4.

External Glare Shield (EGSR)

House Side Shield (HS)

Drilling

HANDHOLE ORIENTATION

A
Handhole

Tenon Mounting Slipfitter

Tenon 0.D.	Mounting	Single Unit	2 @ 180	$2 @ 90$	$3 @ 90$	$3 @ 120$	$4 @ 90$
$2-3 / 8^{\prime \prime}$	RPA	AS3-5 190	AS3-5 280	AS3-5 290	AS3-5 390	AS3-5320	AS3-5 490
$2-7 / 8^{\prime \prime}$	RPA	AST25-190	AST25-280	AST25-290	AST25-390	AST25-320	AST25-490
$4 "$	RPA	AST35-190	AST35-280	AST35-290	AST35-390	AST35-320	AST35-490

DSX1 Area Luminaire - EPA
*Includes luminaire and integral mounting arm. Other tenons, arms, brackets or other accessories are not included in this EPA data.

Fixture Quantity \& Mounting Configuration	Single DM19	2 @ 180 DM28	2@90 DM29	3@90 DM39	3@120 DM32	4@90 DM49
Mounting Type	-					
DSX1 with SPA	0.69	1.38	1.23	1.54	---	1.58
DSX1 with SPA5, SPA8N	0.70	1.40	1.30	1.66	--	1.68
DSX1 with RPA, RPA5	0.70	1.40	1.30	1.66	1.60	1.68
DSX1 with MA	0.83	1.66	1.50	2.09	2.09	2.09

Isofootcandle plots for the DSX1 LED P9 40K 70CRI. Distances are in units of mounting height (25^{\prime}).

Lumen Ambient Temperature (LAT) Multipliers
Use these factors to determine relative lumen output for average ambient temperatures from $0-40^{\circ} \mathrm{C}\left(32-104^{\circ} \mathrm{F}\right)$.

Ambient		Lumen Multiplier
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	1.04
$5^{\circ} \mathrm{C}$	$41^{\circ} \mathrm{F}$	1.04
$10^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.03
$15^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.02
$20^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{F}$	1.01
$\mathbf{2 5 ^ { \circ } \mathrm { C }}$	$\mathbf{7 7 ^ { \circ } \mathrm { C }}$	$\mathbf{1 . 0 0}$
$30^{\circ} \mathrm{C}$	$86^{\circ} \mathrm{F}$	0.99
$35^{\circ} \mathrm{C}$	$95^{\circ} \mathrm{F}$	0.98
$40^{\circ} \mathrm{C}$	$104^{\circ} \mathrm{F}$	0.97

Projected LED Lumen Maintenance

Data references the extrapolated performance projections for the platforms noted in a $25^{\circ} \mathrm{C}$ ambient, based on 10,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).
To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	Lumen Maintenance Factor
0	1.00
25,000	0.95
50,000	0.90
100,000	0.81

Electrical Load

					Current (A)					
	Performance Package	LED Count	Drive Current (mA)	Wattage	120V	208V	240V	277V	347V	480V
Forward Optics (Non-Rotated)	P1	30	530	51	0.42	0.24	0.21	0.18	0.15	0.11
	P2	30	700	68	0.56	0.33	0.28	0.24	0.20	0.14
	P3	30	1050	104	0.85	0.49	0.43	0.37	0.29	0.21
	P4	30	1250	125	1.03	0.60	0.52	0.45	0.36	0.26
	P5	30	1400	142	1.15	0.66	0.58	0.50	0.40	0.29
	P6	40	1250	167	1.38	0.79	0.69	0.60	0.48	0.34
	P7	40	1400	188	1.54	0.89	0.77	0.67	0.53	0.38
	P8	60	1100	216	1.80	1.04	0.90	0.78	0.62	0.45
	P9	60	1400	279	2.31	1.33	1.15	1.00	0.80	0.58
Rotated Optics (Requires L90 or R90)	P10	60	530	101	0.84	0.49	0.42	0.37	0.29	0.21
	P11	60	700	135	1.12	0.65	0.56	0.49	0.39	0.28
	P12	60	1050	206	1.72	0.99	0.86	0.74	0.59	0.43
	P13	60	1400	279	2.30	1.33	1.15	1.00	0.79	0.57

LED Color Temperature / Color Rendering Multipliers

FAO Dimming Settings

FAO Position	\% Wattage	\% Lumen Output
8	100%	100%
7	93%	95%
6	80%	85%
5	66%	73%
4	54%	61%
3	41%	49%
2	29%	36%
1	15%	20%

*Note: Calculated values are based on original performance package data. When calculating new values for given FAO position, use maximum published values by package listed on specification sheet (input watts and lumens by optic type).

	70 CRI		80 CRI		90 CRI	
	Lumen Multiplier	Availability	Lumen Multiplier	Availability	Lumen Multiplier	Availability
5000 K	102%	Standard	92%	Extended lead-time	71%	(see note)
4000 K	100%	Standard	92%	Extended lead-time	67%	(see note)
3500 K	100%	(see note)	90%	Extended lead-time	63%	(see note)
3000 K	96%	Standard	87%	Extended lead-time	61%	(see note)
2700 K	94%	(see note)	85%	Extended lead-time	57%	(see note)

Note: Some LED types are available as per special request. Contact Technical Support for more information.

Motion Sensor Default Settings

Option	Unoccupied Dimmed Level	High Level (when occupied)	Phototcell Operation	Dwell Time	Ramp-up Time	Dimming Fade Rate
PIR	30%	100%	Enabled @ 2FC	7.5 min	3 sec	
NLTAIR2 PIRHN	30%	100%	Enabled @ 2FC	7.5 min	5 min	

Controls Options

Nomendature	Description	Functionality	Primary control device	Notes
FAO	Field adjustable output device installed inside the luminaire; wired to the driver dimming leads.	Allows the luminaire to be manually dimmed, effectively trimming the light output.	FAO device	Cannot be used with other controls options that need the $0-10 \mathrm{~V}$ leads
DS (not available on DSXO)	Drivers wired independently for $50 / 50$ luminaire operation	The luminaire is wired to two separate circuits, allowing for $50 / 50$ operation.	Independently wired drivers	Requires two separately switched circuits. Consider nLight AIR as a more cost effective alternative.
PER5 or PER7	Twist-lock photocell receptacle	Compatible with standard twist-lock photocells for dusk to dawn operation, or advanced control nodes that provide $0-10 \mathrm{~V}$ dimming signals.	Twist-lock photocells such as DLL Elite or advanced control nodes such as ROAM.	Pins 4 \& 5 to dimming leads on driver, Pins 6 \& 7 are capped inside luminaire. Cannot be used with other controls options that need the $0-10 \mathrm{~V}$ leads.
PIR	Motion sensor with integral photocell. Sensor suitable for 8^{\prime} to 40 ' mounting height.	Luminaires dim when no occupancy is detected.	Acuity Controls rSBG	Cannot be used with other controls options that need the 0-10V leads.
NLTAIR2 PIRHN	nLight AIR enabled luminaire for motion sensing, photocell and wireless communication.	Motion and ambient light sensing with group response. Scheduled dimming with motion sensor over-ride when wirelessly connected to the nLight Eclypse.	nLight Air rSBG	nLight AIR sensors can be programmed and commissioned from the ground using the CIAIRity Pro app. Cannot be used with other controls options that need the $0-10 \mathrm{~V}$ leads.
BL30 or BL50	Integrated bi-level device that allows a second control circuit to switch all light engines to either 30% or 50% light output	BLC device provides input to $0-10 \mathrm{~V}$ dimming leads on all drivers providing either 100% or dimmed (30% or 50%) control by a secondary circuit	BLC UVOLT1	BLC device is powered off the $0-10 \mathrm{~V}$ dimming leads, thus can be used with any input voltage from 120 to 480 V

One Lithonia Way • Conyers, Georgia 30012 • Phone: 1-800-705-SERV (7378) • www.lithonia.com

Performance Data

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of configurations shown within the tolerances described within LM-79. Contact factory for performance data on any configurations not shown here.

Forward Optics																			
Performance Package	System Watts	LED Count	Drive Current (mA)	Distribution Type	30K					40K					50K				
					(3000K, 70 CRI)					(4000K, 70 CRI)					(5000K, 70 CRI)				
					Lumens	B	U	6	LPW	Lumens	B	U	G	LPW	Lumens	B	U	G	LPW
P1	51W	30	530	T1S	7,776	1	0	2	153	8,104	1	0	2	159	8,262	1	0	2	162
				T2M	7,203	1	0	3	142	7,507	2	0	3	147	7,653	2	0	3	150
				T3M	7,287	1	0	3	143	7,594	1	0	3	149	7,742	1	0	3	152
				T3LG	6,509	1	0	1	128	6,783	1	0	1	133	6,916	1	0	1	136
				T4M	7,395	1	0	3	145	7,707	1	0	3	151	7,857	1	0	3	154
				T4LG	6,726	1	0	1	132	7,010	1	0	1	138	7,146	1	0	1	140
				TFTM	7,446	1	0	3	146	7,760	1	0	3	152	7,912	1	0	3	155
				T5M	7,609	3	0	2	149	7,930	3	0	2	156	8,084	3	0	2	159
				T5W	7,732	3	0	2	152	8,058	4	0	2	158	8,215	4	0	2	161
				TSLG	7,631	3	0	1	150	7,953	3	0	1	156	8,108	3	0	1	159
				BLC3	5,300	0	0	2	104	5,524	0	0	2	109	5,631	0	0	2	111
				BLC4	5,474	0	0	3	108	5,705	0	0	3	112	5,816	0	0	3	114
				RCCO	5,348	0	0	2	105	5,573	0	0	2	109	5,682	0	0	2	112
				LCCO	5,348	0	0	2	105	5,573	0	0	2	109	5,682	0	0	2	112
				AFR	7,776	1	0	2	153	8,104	1	0	2	159	8,262	1	0	2	162
P2	68W	30	700	T15	9,997	1	0	2	147	10,418	1	0	2	154	10,621	1	0	2	157
				T2M	9,260	2	0	3	137	9,651	2	0	3	142	9,839	2	0	3	145
				T3M	9,368	2	0	3	138	9,763	2	0	3	144	9,953	2	0	3	147
				T3LG	8,368	1	0	2	123	8,721	1	0	2	129	8,891	1	0	2	131
				T4M	9,507	2	0	3	140	9,909	2	0	3	146	10,102	2	0	3	149
				T4LG	8,647	1	0	2	128	9,012	1	0	2	133	9,187	1	0	2	136
				TFTM	9,573	2	0	3	141	9,977	2	0	3	147	10,172	2	0	3	150
				T5M	9,782	4	0	2	144	10,195	4	0	2	150	10,393	4	0	2	153
				T5W	9,940	4	0	2	147	10,360	4	0	2	153	10,562	4	0	2	156
				TSLG	9,810	3	0	1	145	10,224	3	0	1	151	10,423	3	0	1	154
				BLC3	6,814	0	0	2	101	7,101	0	0	2	105	7,240	0	0	2	107
				BLC4	7,038	0	0	3	104	7,334	0	0	3	108	7,477	0	0	3	110
				RCCO	6,875	1	0	2	101	7,165	1	0	2	106	7,305	1	0	2	108
				LCCO	6,875	1	0	2	101	7,165	1	0	2	106	7,305	1	0	2	108
				AFR	9,997	1	0	2	147	10,418	1	0	2	154	10,621	1	0	2	157
P3	102W	30	1050	T1S	14,093	2	0	2	138	14,687	2	0	2	144	14,973	2	0	2	147
				T2M	13,055	2	0	3	128	13,605	2	0	3	133	13,871	2	0	3	136
				T3M	13,206	2	0	4	129	13,763	2	0	4	135	14,031	2	0	4	137
				T3LG	11,797	2	0	2	115	12,294	2	0	2	120	12,534	2	0	2	123
				T4M	13,403	2	0	4	131	13,968	2	0	4	137	14,241	2	0	4	139
				T4LG	12,190	2	0	2	119	12,704	2	0	2	124	12,952	2	0	2	127
				TFTM	13,496	2	0	4	132	14,065	2	0	4	138	14,339	2	0	4	140
				T5M	13,790	4	0	2	135	14,371	4	0	2	141	14,652	4	0	2	143
				T5W	14,013	4	0	3	137	14,605	4	0	3	143	14,889	4	0	3	146
				T5LG	13,830	3	0	2	135	14,413	3	0	2	141	14,694	3	0	2	144
				BLC3	9,606	0	0	2	94	10,011	0	0	2	98	10,206	0	0	2	100
				BLC4	9,921	0	0	3	97	10,340	0	0	3	101	10,541	0	0	3	103
				RCCO	9,692	1	0	2	95	10,101	1	0	2	99	10,298	1	0	2	101
				LCCO	9,692	1	0	2	95	10,101	1	0	2	99	10,298	1	0	2	101
				AFR	14,093	2	0	2	138	14,687	2	0	2	144	14,973	2	0	2	147

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of configurations shown within the tolerances described within LM-79. Contact factory for performance data on any configurations not shown here.

Forward Optics																			
Performance Package	System Watts	LED Count	Drive Current (mA)	Distribution Type	30K					40K					50K				
					(3000K, 70 CRI)					(4000K, 70 CRI)					(5000K, 70 CRI)				
					Lumens	B	U	6	LPW	Lumens	B	U	6	LPW	Lumens	B	U	G	LPW
P4	124W	30	1250	T1S	16,416	2	0	3	132	17,109	2	0	3	138	17,442	2	0	3	141
				T2M	15,207	3	0	4	123	15,849	3	0	4	128	16,158	3	0	4	130
				T3M	15,383	2	0	4	124	16,032	2	0	4	129	16,345	2	0	4	132
				T3LG	13,742	2	0	2	111	14,321	2	0	2	116	14,600	2	0	2	118
				T4M	15,613	2	0	4	126	16,272	2	0	4	131	16,589	2	0	4	134
				T4LG	14,200	2	0	2	115	14,799	2	0	2	119	15,087	2	0	2	122
				TFTM	15,721	2	0	4	127	16,384	2	0	4	132	16,703	2	0	4	135
				T5M	16,063	4	0	2	130	16,741	4	0	2	135	17,067	4	0	2	138
				T5W	16,324	5	0	3	132	17,013	5	0	3	137	17,344	5	0	3	140
				T5LG	16,110	3	0	2	130	16,790	4	0	2	135	17,117	4	0	2	138
				BLC3	11,190	0	0	3	90	11,662	0	0	3	94	11,889	0	0	3	96
				BLC4	11,557	0	0	3	93	12,044	0	0	3	97	12,279	0	0	4	99
				RCCO	11,291	1	0	3	91	11,767	1	0	3	95	11,996	1	0	3	97
				LCCO	11,291	1	0	3	91	11,767	1	0	3	95	11,996	1	0	3	97
				AFR	16,416	2	0	3	132	17,109	2	0	3	138	17,442	2	0	3	141
P5	138W	30	1400	T1S	18,052	2	0	3	131	18,814	2	0	3	136	19,180	2	0	3	139
				T2M	16,723	3	0	4	121	17,428	3	0	4	126	17,768	3	0	4	129
				T3M	16,917	3	0	4	122	17,630	3	0	4	128	17,974	3	0	4	130
				T3LG	15,111	2	0	2	109	15,749	2	0	2	114	16,055	2	0	2	116
				T4M	17,169	3	0	5	124	17,893	3	0	5	130	18,242	3	0	5	132
				T4LG	15,615	2	0	2	113	16,274	2	0	2	118	16,591	2	0	2	120
				TFTM	17,288	2	0	4	125	18,017	2	0	5	130	18,368	3	0	5	133
				T5M	17,664	5	0	3	128	18,410	5	0	3	133	18,768	5	0	3	136
				T5W	17,951	5	0	3	130	18,708	5	0	3	135	19,073	5	0	3	138
				TSLG	17,716	4	0	2	128	18,463	4	0	2	134	18,823	4	0	2	136
				BLC3	12,305	0	0	3	89	12,824	0	0	3	93	13,074	0	0	3	95
				BLC4	12,709	0	0	4	92	13,245	0	,	4	96	13,503	0	0	4	98
				RCCO	12,416	1	0	3	90	12,940	1	0	3	94	13,192	1	0	3	95
				LCCO	12,416	1	0	3	90	12,940	1	0	3	94	13,192	1	0	3	95
				AFR	18,052	2	0	3	131	18,814	2	0	3	136	19,180	2	0	3	139
P6	165W	40	1250	T1S	21,031	2	0	3	127	21,918	2	0	3	133	22,345	2	0	3	135
				T2M	19,482	3	0	4	118	20,303	3	0	4	123	20,699	3	0	4	125
				T3M	19,708	3	0	5	119	20,539	3	0	5	124	20,939	3	0	5	127
				T3LG	17,604	2	0	2	107	18,347	2	0	2	111	18,704	2	0	2	113
				T4M	20,001	3	0	5	121	20,845	3	0	5	126	21,251	3	0	5	129
				T4LG	18,191	2	0	2	110	18,959	2	0	2	115	19,328	2	0	2	117
				TFTM	20,140	3	0	5	122	20,989	3	0	5	127	21,398	3	0	5	129
				T5M	20,579	5	0	3	125	21,447	5	0	3	130	21,865	5	0	3	132
				T5W	20,912	5	0	3	127	21,795	5	0	3	132	22,219	5	0	3	134
				T5LG	20,638	4	0	2	125	21,509	4	0	2	130	21,928	4	0	2	133
				BLC3	14,335	0	0	3	87	14,940	0	0	3	90	15,231	0	0	3	92
				BLC4	14,805	0	0	4	90	15,430	0	0	4	93	15,731	0	0	4	95
				RCCO	14,464	1	0	3	88	15,074	1	0	3	91	15,368	1	0	3	93
				LCCO	14,464	1	0	3	88	15,074	1	0	3	91	15,368	1	0	3	93
				AFR	21,031	2	0	3	127	21,918	2	0	3	133	22,345	2	0	3	135

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of configurations shown within the tolerances described within LM-79. Contact factory for performance data on any configurations not shown here.

Forward Optics																			
Performance Package	System Watts	LED Count	Drive Current (mA)	Distribution Type	30K					40K					50K				
					(3000K, 70 CRI)					(4000K, 70 CRI)					(5000K, 70 CRI)				
					Lumens	B	U	6	LPW	Lumens	B	U	6	LPW	Lumens	B	U	G	LPW
P7	184W	40	1400	T1S	22,741	2	0	3	123	23,700	2	0	3	129	24,162	3	0	3	131
				T2M	21,066	3	0	4	114	21,955	3	0	4	119	22,383	3	0	4	121
				T3M	21,311	3	0	5	116	22,210	3	0	5	120	22,642	3	0	5	123
				T3LG	19,036	2	0	2	103	19,839	2	0	3	108	20,226	2	0	3	110
				T4M	21,628	3	0	5	117	22,541	3	0	5	122	22,980	3	0	5	125
				T4LG	19,671	2	0	2	107	20,501	2	0	3	111	20,900	2	0	3	113
				TFTM	21,778	3	0	5	118	22,697	3	0	5	123	23,139	3	0	5	125
				T5M	22,252	5	0	3	121	23,191	5	0	3	126	23,643	5	0	3	128
				T5W	22,613	5	0	3	123	23,567	5	0	4	128	24,027	5	0	4	130
				T5LG	22,317	4	0	2	121	23,258	4	0	2	126	23,712	4	0	2	129
				BLC3	15,501	0	0	3	84	16,155	0	0	4	88	16,470	0	0	4	89
				BLC4	16,010	0	0	4	87	16,685	0	0	4	90	17,010	0	0	4	92
				RCCO	15,641	1	0	3	85	16,301	1	0	3	89	16,619	1	0	3	90
				LCCO	15,641	1	0	3	85	16,301	1	0	3	89	16,619	1	0	3	90
				AFR	22,741	2	0	3	123	23,700	2	0	3	129	24,162	3	0	3	131
P8	216W	60	1100	T15	28,701	3	0	3	133	29,912	3	0	4	139	30,495	3	0	4	141
				T2M	26,587	3	0	5	123	27,709	3	0	5	128	28,249	3	0	5	131
				T3M	26,895	3	0	5	125	28,030	3	0	5	130	28,576	3	0	5	132
				T3LG	24,025	3	0	3	111	25,038	3	0	3	116	25,526	3	0	3	118
				T4M	27,296	3	0	5	127	28,448	3	0	5	132	29,002	3	0	5	134
				T4LG	24,826	3	0	3	115	25,873	3	0	3	120	26,378	3	0	3	122
				TFTM	27,485	3	0	5	127	28,645	3	0	5	133	29,203	3	0	5	135
				T5M	28,084	5	0	4	130	29,269	5	0	4	136	29,839	5	0	4	138
				T5W	28,539	5	0	4	132	29,743	5	0	4	138	30,323	5	0	4	141
				TSLG	28,165	4	0	2	131	29,354	4	0	2	136	29,926	4	0	2	139
				BLC3	19,563	0	0	4	91	20,388	0	0	4	94	20,786	0	0	4	96
				BLC4	20,205	0	0	5	94	21,057	0	0	5	98	21,468	0	0	5	99
				RCCO	19,740	1	0	4	91	20,572	1	0	4	95	20,973	1	0	4	97
				LCCO	19,740	1	0	4	91	20,572	1	0	4	95	20,973	1	0	4	97
				AFR	28,701	3	0	3	133	29,912	3	0	4	139	30,495	3	0	4	141
P9	277W	60	1400	T1S	34,819	3	0	4	126	36,288	3	0	4	131	36,996	3	0	4	134
				T2M	32,255	3	0	5	116	33,616	3	0	5	121	34,271	3	0	5	124
				T3M	32,629	3	0	5	118	34,006	3	0	5	123	34,668	3	0	5	125
				T3LG	29,146	3	0	3	105	30,376	3	0	4	110	30,968	3	0	4	112
				T4M	33,116	3	0	5	120	34,513	3	0	5	125	35,185	3	0	5	127
				T4LG	30,119	3	0	3	109	31,389	3	0	4	113	32,001	3	0	4	116
				TFTM	33,345	3	0	5	120	34,751	3	0	5	125	35,429	3	0	5	128
				T5M	34,071	5	0	4	123	35,509	5	0	4	128	36,201	5	0	4	131
				T5W	34,624	5	0	4	125	36,084	5	0	4	130	36,788	5	0	4	133
				T5LG	34,170	5	0	3	123	35,612	5	0	3	129	36,306	5	0	3	131
				BLC3	23,734	0	0	4	86	24,735	0	0	4	89	25,217	0	0	4	91
				BLC4	24,513	0	0	5	88	25,547	0	0	5	92	26,045	0	0	5	94
				RCCO	23,948	1	0	4	86	24,958	1	0	4	90	25,445	1	0	4	92
				LCCO	23,948	1	0	4	86	24,958	1	0	4	90	25,445	1	0	4	92
				AFR	34,819	3	0	4	126	36,288	3	0	4	131	36,996	3	0	4	134

Lumen Output

Lumen values are from photometric tests performed in accordance with IESNA LM-79-08. Data is considered to be representative of configurations shown within the tolerances described within LM-79. Contact factory for performance data on any configurations not shown here.

Rotated Optics																			
Performance Package	System Watts	LED Count	Drive Current (mA)	Distribution Type	30K					40K					50K				
					(3000K, 70 CR)					(4000K, 70 CRI)					(5000K, 70 CRI)				
					Lumens	B	U	G	LPW	Lumens	B	U	G	LPW	Lumens	B	U	G	LPW
P10	101W	60	530	T1S	15,164	3	0	3	150	15,803	3	0	3	156	16,112	3	0	3	159
				T2M	14,047	4	0	4	139	14,640	4	0	4	145	14,925	4	0	4	147
				T3M	14,208	4	0	4	140	14,807	4	0	4	146	15,096	4	0	4	149
				T3LG	12,693	3	0	3	125	13,229	3	0	3	131	13,487	3	0	3	133
				T4M	14,420	4	0	4	142	15,028	4	0	4	148	15,321	4	0	4	151
				T4LG	13,115	3	0	3	129	13,668	3	0	3	135	13,934	3	0	3	138
				TFTM	14,522	4	0	4	143	15,134	4	0	4	149	15,429	4	0	4	152
				T5M	14,836	4	0	2	146	15,462	4	0	2	153	15,763	4	0	2	156
				T5W	15,076	4	0	3	149	15,712	5	0	3	155	16,019	5	0	3	158
				T5LG	14,879	3	0	2	147	15,507	3	0	2	153	15,809	3	0	2	156
				BLC3	10,335	3	0	3	102	10,771	4	0	4	106	10,981	4	0	4	108
				BLC4	10,674	4	0	4	105	11,124	4	0	4	110	11,341	4	0	4	112
				RCCO	10,429	1	0	2	103	10,869	1	0	2	107	11,080	1	0	2	109
				LCCO	10,429	1	0	2	103	10,869	1	0	2	107	11,080	1	0	2	109
				AFR	15,164	3	0	3	150	15,803	3	0	3	156	16,112	3	0	3	159
P11	135W	60	700	T1S	19,437	4	0	4	144	20,257	4	0	4	150	20,651	4	0	4	153
				T2M	18,005	4	0	4	133	18,765	4	0	4	139	19,131	4	0	4	142
				T3M	18,211	4	0	4	135	18,980	4	0	4	141	19,350	4	0	4	143
				T3LG	16,270	3	0	3	121	16,957	3	0	3	126	17,287	4	0	4	128
				T4M	18,483	4	0	4	137	19,263	5	0	5	143	19,638	5	0	5	146
				T4LG	16,810	3	0	3	125	17,519	3	0	3	130	17,861	3	0	3	132
				TFTM	18,614	4	0	4	138	19,399	4	0	4	144	19,777	5	0	5	147
				T5M	19,017	5	0	3	141	19,819	5	0	3	147	20,205	5	0	3	150
				T5W	19,325	5	0	3	143	20,140	5	0	3	149	20,533	5	0	3	152
				T5LG	19,072	4	0	2	141	19,876	4	0	2	147	20,264	4	0	2	150
				BLC3	13,247	4	0	4	98	13,806	4	0	4	102	14,075	4	0	4	104
				BLC4	13,682	4	0	4	101	14,259	4	0	4	106	14,537	4	0	4	108
				RCCO	13,367	1	0	3	99	13,931	1	0	3	103	14,203	1	0	3	105
				LCCO	13,367	1	0	3	99	13,931	1	0	3	103	14,203	1	0	3	105
				AFR	19,437	4	0	4	144	20,257	4	0	4	150	20,651	4	0	4	153
P12	206W	60	1050	T1S	27,457	4	0	4	133	28,616	4	0	4	139	29,174	4	0	4	142
				T2M	25,436	5	0	5	124	26,509	5	0	5	129	27,025	5	0	5	131
				T3M	25,727	5	0	5	125	26,812	5	0	5	130	27,335	5	0	5	133
				T3LG	22,984	4	0	4	112	23,954	4	0	4	116	24,421	4	0	4	119
				T4M	26,110	5	0	5	127	27,212	5	0	5	132	27,742	5	0	5	135
				T4LG	23,747	4	0	4	115	24,749	4	0	4	120	25,231	4	0	4	123
				TFTM	26,295	5	0	5	128	27,404	5	0	5	133	27,938	5	0	5	136
				T5M	26,864	5	0	4	130	27,997	5	0	4	136	28,543	5	0	4	139
				T5W	27,299	5	0	4	133	28,451	5	0	4	138	29,006	5	0	4	141
				T5LG	26,942	4	0	2	131	28,078	4	0	2	136	28,626	4	0	2	139
				BLC3	18,714	4	0	4	91	19,504	4	0	4	95	19,884	4	0	4	97
				BLC4	19,327	5	0	5	94	20,143	5	0	5	98	20,535	5	0	5	100
				RCCO	18,883	1	0	4	92	19,680	1	0	4	96	20,064	1	0	4	97
				LCCO	18,883	1	0	4	92	19,680	1	0	4	96	20,064	1	0	4	97
				AFR	27,457	4	0	4	133	28,616	4	0	4	139	29,174	4	0	4	142
P13	276W	60	1400	T1S	34,436	5	0	5	125	35,889	5	0	5	130	36,588	5	0	5	133
				T2M	31,900	5	0	5	116	33,246	5	0	5	121	33,894	5	0	5	123
				T3M	32,265	5	0	5	117	33,626	5	0	5	122	34,282	5	0	5	124
				T3LG	28,826	4	0	4	105	30,042	4	0	4	109	30,628	4	0	4	111
				T4M	32,746	5	0	5	119	34,128	5	0	5	124	34,793	5	0	5	126
				T4LG	29,782	4	0	4	108	31,039	4	0	4	113	31,644	5	0	4	115
				TFTM	32,978	5	0	5	120	34,369	5	0	5	125	35,039	5	0	5	127
				T5M	33,692	5	0	4	122	35,113	5	0	4	127	35,797	5	0	4	130
				T5W	34,238	5	0	4	124	35,682	5	0	4	129	36,378	5	0	4	132
				T5LG	33,789	5	0	3	122	35,215	5	0	3	128	35,901	5	0	3	130
				BLC3	23,471	5	0	5	85	24,461	5	0	5	89	24,937	5	0	5	90
				BLC4	24,240	5	0	5	88	25,262	5	0	5	92	25,755	5	0	5	93
				RCCO	23,683	1	0	4	86	24,682	1	0	4	89	25,163	1	0	4	91
				LCCO	23,683	1	0	4	86	24,682	1	0	4	89	25,163	1	0	4	91
				AFR	34,436	5	0	5	125	35,889	5	0	5	130	36,588	5	0	5	133

DSX1 with RPA, RPA5, SPA5, SPA8N mount
Weight: 36 lbs

DSX1 with WBA mount
Weight: 38 lbs

DSX1 with MA mount Weight: 39 lbs

nLight Sensor Coverage Pattern

 NLTAIR2 PIRHN
FEATURES \& SPECIFICATIONS

INTENDED USE

The sleek design of the D-Series Size 1 reflects the embedded high performance LED technology. It is ideal for many commercial and municipal applications, such as parking lots, plazas, campuses, and streetscapes.

CONSTRUCTION

Single-piece die-cast aluminum housing has integral heat sink fins to optimize thermal management through conductive and convective cooling. Modular design allows for ease of maintenance and future light engine upgrades. The LED drivers are mounted in direct contact with the casting to promote low operating temperature and long life. Housing driver compartment is completely sealed against moisture and environmental contaminants (IP66). Vibration rated per ANSI C136.31 for 3G for SPA and MA. 1.5G for mountings RPA, RPA5, SPA5 and SPA8N. Low EPA ($0.69 \mathrm{ft}^{2}$) for optimized pole wind loading.

FINISH

Exterior parts are protected by a zinc-infused Super Durable TGIC thermoset powder coat finish that provides superior resistance to corrosion and weathering. A tightly controlled multi-stage process ensures a minimum 3 mils thickness for a finish that can withstand extreme climate changes without cracking or peeling. Available in both textured and non-textured finishes.

Coastal Construction (CCE)

Optional corrosion resistant construction is engineered with added corrosion protection in materials and/or pre-treatment of base material under super durable paint. Provides additional corrosion protection for applications near coastal areas. Finish is salt spray tested to over 5,000 hours per ASTM B117 with scribe rating of 10. Additional lead-times may apply.

OPTICS

Precision-molded proprietary silicone lenses are engineered for superior area lighting distribution, uniformity, and pole spacing. Light engines are available in standard $3000 \mathrm{~K}, 4000 \mathrm{~K}$ and $5000 \mathrm{~K}(70 \mathrm{CRI})$ configurations. 80CRI configurations are also available. The D-Series Size 1 has zero uplight and qualifies as a Nighttime Friendly ${ }^{\text {TM }}$ product, meaning it is consistent with the LEED ${ }^{\circledR}$ and Green Globes ${ }^{\text {™ }}$ criteria for eliminating wasteful uplight.

ELECTRICAL

Light engine configurations consist of high-efficacy LEDs mounted to metalcore circuit boards to maximize heat dissipation and promote long life (up to L81/100,000 hours at $25^{\circ} \mathrm{C}$. Class 1 electronic drivers are designed to have a power factor $>90 \%$, THD $<20 \%$, and an expected life of 100,000 hours with $<1 \%$ failure rate. Easily serviceable 10 kV surge protection device meets a minimum Category C Low operation (per ANSI/IEEE C62.41.2).

STANDARD CONTROLS

The DSX1 LED area luminaire has a number of control options. DSX Size 1, comes standard with 0-10V dimming drivers. Dusk to dawn controls can be utilized via optional NEMA twist-lock photocell receptacles. Integrated motion sensor with on-board photocells feature field-adjustable programing and are suitable for mounting heights up to 40 feet. Control option BL features a bi-level device that allows a second control circuit to switch all light engines to either 30% or 50% light output.

nLIGHT AIR CONTROLS

The DSX1 LED area luminaire is also available with nLight ${ }^{\circledR}$ AIR for the ultimate in wireless control. This powerful controls platform provides out-of-the-box basic motion sensing and photocontrol functionality and is suitable for mounting heights up to 40 feet. Once commissioned using a smartphone and the easy-touse CLAIRITY app, nLight AIR equipped luminaries can be grouped, resulting in motion sensor and photocell group response without the need for additional equipment. Scheduled dimming with motion sensor over-ride can be achieved when used with the nLight Eclypse. Additional information about nLight Air can be found here.

INSTALLATION

Integral mounting arm allows for fast mounting using Lithonia standard \#8 drilling and accommodates pole drilling's from 2.41 to $3.12^{\prime \prime}$ on center. The standard "SPA" option for square poles and the "RPA" option for round poles use the \#8 drilling. For \#5 pole drillings, use SPA5 or RPA5. Additional mountings are available including a wall bracket (WBA) and mast arm (MA) option that allows luminaire attachment to a $23 / 8^{\prime \prime}$ horizontal mast arm.

LISTINGS

UL listed to meet U.S. and Canadian standards. UL Listed for wet locations. Light engines are IP66 rated; luminaire is IP66 rated. Rated for $-40^{\circ} \mathrm{C}$ minimum ambient.
DesignLights Consortium ${ }^{\circledR}$ (DLC) Premium qualified product and DLC qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/ QPL to confirm which versions are qualified.

International Dark-Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000 K color temperature only.

WARRANTY

5 -year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at: www.acuitybrands.com/support/warranty/terms-and-conditions
Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$. Specifications subject to change without notice.

Project: ACE HARDWARE POLK CITY
Fixture Type: XS1

Location:
Contact: ENERGY STAR

Description:

Sleek, 3" LED cylindrical wall lantern with up/downlight in elegant Antique Bronze finish. Die-cast aluminum wall brackets and heavy-duty aluminum framing. Fade and chip-resistant. UL listed for wet locations. Can be used indoor or outdoor.

Specifications:

- Clear glass lens
- 3" LED wall mount up/downlight cylinder
- This sleek, contemporary cylinder is ideal for indoor or outdoor applications
- An Antique Bronze finish complements a variety of exteriors
- Warm white, 3000K, color temperature, 90 CRI
- 1484 lumens, 62 lumens per watt (delivered)
- Die Cast Aluminum construction with durable powder coated finish
- Dimmable to 10% brightness with many Forward Phase (Triac) and Reverse Phase (ELV) dimmers
- Energy Star Qualified
- Meets California T24 JA8-2016.
- Dimmable to 10\% brightness (See Dimming Notes)
- Back plate covers a standard 4 " recessed outlet box: 4.378 in W., 4.378 in ht., 0.86 in depth
- Mounting strap for outlet box included
- 6 in of wire supplied

Performance:

Number of Modules	2
Input Power	12 W
Input Voltage	120 V
Input Frequency	60 Hz
Lumens/LPW (Delivered)	$1,484 / 62$ (LM-79)
CCT	3000 K
CRI	90 CRI
Life (hours)	50000 (L70/TM-21)
EMI/RFI	FCC Title 47, Part 15, Class B
Max. Operating Temp	$40^{\circ} \mathrm{C}$
Warranty	$5-y e a r$ Limited Warranty
Labels	CSA Wet Location Listed
	ENERGY STAR® qualified
	Meets California Title 24 JA8-2016

P563001-020-30K

Dimensions:

Width: $4-1 / 2$ in
Height: $8-1 / 4$ in
Depth: $5-1 / 2$ in
H/CTR: 5 in

Cylinders

Photometrics:

ELECTRICAL DATA

Input Voltage

Input Frequency Input Current
THD
EMI/RFI
Operating Temperature
Dimming
Yes:
Over-voltage, over-current, short-circuit protected
*See Dimming Notes for more information

P563001-020-30K

LED Light Engine: 3000 K 90 CRI
System Wattage: 24
Fixture delivered lumens: 1484
Fixture Efficacy: 62
Spacing Criteria: 1.25

Test 17.02586 Test Date 10/10/17

CANDELA DISTRIBUTION				ZONAL LUMEN SUMMARY		
DEG	CAN	ELA	LUMENS	ZONE	LUMENS	\%FIXT
0	451			0-30	351	23.6
5				0-40	568	38.3
5	448	43		-0-60	855	57.6
15	435	123		0-90	908	61.2
25	401	185		90-120	2	0.1
35	350	218		90-130	6	0.4
45	239	183		90-150	220	14.8
45	239	183		90-180	576	38.8
55	113	103		-0-180	1484	100.0
65	39	40				
75	10	12				
85	1	1				
90	0					
95	0	0				
105	1	1				
115	1	1				
125	4	3				
135	6	16				
145	345	198				
155	412	190				
165	435	123				
175	463	44				
180	477					

Cylinders

Dimming Notes:

P563001-020-30K is designed to be compatible with many Triac/Forward Phase ELV/Reverse Phase controls.

The following is a partial list of known compatible dimmer controls.

Dimming Controls:

Lutron_Diva DVELV-300P

Lutron_Caseta Wireless
Leviton_SureSlide 6672
Lutron_Ariadni AYCL-153P
Lutron_Toggler TGCL-153PH-WH

Dimming capabilities will vary depending on the dimmer control, load, and circuit installation.
Always refer to dimmer manufacturer instructions or a controls specialist for specific requirements.
Dimmer control brand names where identified above are trade names or registered trademarks of each respective company.

Specifications

Luminaire	Height (H)	Front View		Side View		Weight
		Width (W)	Depth (D)	Side Conduit Location		
				A	B	
WPX1	$8.11^{\prime \prime}(20.6 \mathrm{~cm})$	$11.1{ }^{\prime \prime}(28.3 \mathrm{~cm})$	$3.2{ }^{\prime \prime}(8.1 \mathrm{~cm})$	$4.0{ }^{\prime \prime}(10.3 \mathrm{~cm})$	$0.6^{\prime \prime}(1.6 \mathrm{~cm})$	$6.1 \mathrm{lbs}(2.8 \mathrm{~kg})$
WPX2	$9.1{ }^{\prime \prime}(23.1 \mathrm{~cm})$	12.3 " $(31.1 \mathrm{~cm})$	$4.1{ }^{\prime \prime}(10.5 \mathrm{~cm})$	4.5 " $(11.5 \mathrm{~cm})$	0.7 " 1.7 cm)	$8.2 \mathrm{lbs}(3.7 \mathrm{~kg})$
WPX3	9.5 " 24.1 cm)	13.0 " $(33.0 \mathrm{~cm})$	$5.5^{\prime \prime}(13.7 \mathrm{~cm})$	$4.7{ }^{\prime \prime}(12.0 \mathrm{~cm})$	0.7 " 1.7 cm)	$11.0 \mathrm{lbs}(5.0 \mathrm{~kg})$

Catalog Number	
Notes	ACE HARDWARE POLK CITY
Type	XW 1, XW 1/EM

Introduction

The WPX LED wall packs are energy-efficient, costeffective, and aesthetically appealing solutions for both HID wall pack replacement and new construction opportunities. Available in three sizes, the WPX family delivers 1,550 to 9,200 lumens with a wide, uniform distribution.

The WPX full cut-off solutions fully cover the footprint of the HID glass wall packs that they replace, providing a neat installation and an upgraded appearance. Reliable IP66 construction and excellent LED lumen maintenance ensure a long service life. Photocell and emergency egress battery options make WPX ideal for every wall mounted lighting application.

FEATURES \& SPECIFICATIONS

INTENDED USE

The WPX LED wall packs are designed to provide a cost-effective, energy-efficient solution for
the one-for-one replacement of existing HID wall packs. The WPX1, WPX2 and WPX3 are ideal for replacing up to $150 \mathrm{~W}, 250 \mathrm{~W}$, and 400 W HID luminaires respectively. WPX luminaires deliver a uniform, wide distribution. WPX is rated for $-40^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.

CONSTRUCTION

WPX feature a die-cast aluminum main body with optimal thermal management that both enhances LED efficacy and extends component life. The luminaires are IP66 rated, and sealed against moisture or environmental contaminants.

ELECTRICAL

Light engine(s) configurations consist of high-efficacy LEDs and LED lumen maintenance of L90/100,000 hours. Color temperature (CCT) options of $3000 \mathrm{~K}, 4000 \mathrm{~K}$ and 5000 K with minimum CRI of 70 . Electronic drivers ensure system power factor $>90 \%$ and THD $<20 \%$. All luminaires have 6 kV surge protection (Note: WPX1 LED P1 package comes with a standard surge protection rating of 2.5 kV . It can be ordered with an optional 6 kV surge protection).
All photocell (PE) operate on MVOLT (120V-277V) input.
Note: The standard WPX LED wall pack luminaires come with field-adjustable drive current feature. This feature allows tuning the output current of the LED drivers to adjust the lumen output (to dim the luminaire).

INSTALLATION

WPX can be mounted directly over a standard electrical junction box. Three $1 / 2$ inch conduit ports on three sides allow for surface conduit wiring. A port on the back surface allows poke-through conduit wiring on surfaces that don't have an electrical junction box. Wiring can be made in the integral wiring compartment in all cases. WPX is only recommended for installations with LEDs facing downwards.

LISTINGS

CSA Certified to meet U.S. and Canadian standards. Suitable for wet locations. IP66 Rated.
DesignLights Consortium® (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified. International Dark Sky Association (IDA) Fixture Seal of Approval (FSA) is available for all products on this page utilizing 3000 K color temperature only.

WARRANTY

5-year limited warranty. This is the only warranty provided and no other statements in this specification sheet create any warranty of any kind. All other express and implied warranties are disclaimed. Complete warranty terms located at:
www.acuitybrands.com/CustomerResources/Terms and conditions.aspx.
Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at $25^{\circ} \mathrm{C}$. Specifications subject to change without notice.

Lumen Output
Electrical Load

Luminaire	Input Power (W)	120 V	208 V	240 V	277 V	347 V
WPX1 LED P1	11 W	0.09	0.05	0.05	0.04	0.03
WPX1 LED P2	24 W	0.20	0.12	0.10	0.09	0.07
WPX2	47 W	0.39	0.23	0.20	0.17	0.14
WPX3	69 W	0.58	0.33	0.29	0.25	0.20

Projected LED Lumen Maintenance
Data references the extrapolated performance projections in a $25^{\circ} \mathrm{C}$
ambient, based on 6,000 hours of LED testing (tested per IESNA LM-80-08 and projected per IESNA TM-21-11).
To calculate LLF, use the lumen maintenance factor that corresponds to the desired number of operating hours below. For other lumen maintenance values, contact factory.

Operating Hours	50,000	75,000	100,000
Lumen Maintenance Factor	>0.94	>0.92	>0.90

HID Replacement Guide

Luminaire	Equivalent HID Lamp	WPX Input Power
WPX1 LED P1	100 W	11 W
WPX1 LED P2	150 W	24 W
WPX2	250 W	47 W
WPX3	400 W	69 W

Luminaire	Color Temperature	Lumen Output
	3000 K	1,537
	4000 K	1,568
	5000 K	1,602
WPX1 LED P2	3000 K	2,748
	4000 K	2,912
	5000 K	2,954
WPX2	3000 K	5,719
	4000 K	5,896
	5000 K	6,201
WPX3	3000 K	8,984
	4000 K	9,269
	5000 K	9,393

Lumen Ambient Temperature

 (LAT) MultipliersUse these factors to determine relative lumen output for average ambient temperatures from $0-50^{\circ} \mathrm{C}\left(32-122^{\circ} \mathrm{F}\right)$.

Ambient	Ambient	Lumen Multiplier
$0^{\circ} \mathrm{C}$	$32^{\circ} \mathrm{F}$	1.05
$5^{\circ} \mathrm{C}$	$41^{\circ} \mathrm{F}$	1.04
$10^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{F}$	1.03
$15^{\circ} \mathrm{C}$	$59^{\circ} \mathrm{F}$	1.02
$20^{\circ} \mathrm{C}$	$68^{\circ} \mathrm{F}$	1.01
$25^{\circ} \mathrm{C}$	$77^{\circ} \mathrm{F}$	1.00
$30^{\circ} \mathrm{C}$	$86^{\circ} \mathrm{F}$	0.99
$35^{\circ} \mathrm{C}$	$95^{\circ} \mathrm{F}$	0.98
$40^{\circ} \mathrm{C}$	$104^{\circ} \mathrm{F}$	0.97

Emergency Egress Battery Packs

The emergency battery backup is integral to the luminaire - no external housing or back box is required. The emergency battery will power the luminaire for a minimum duration of 90 minutes and deliver minimum initial output of 550 lumens. Both battery pack options are CEC compliant.

Battery Type	Minimum Temperature Rating	Power (Watts)	Controls Option	Ordering Example
Standard	$0^{\circ} \mathrm{C}$	4 W	E4WH	WPX2 LED 40K MVOLT E4WH DDBXD
Cold Weather	$-20^{\circ} \mathrm{C}$	14 W	E14WC	WPX2 LED 40K MVOLT E14WC DDBXD

Photometric Diagrams
 To see complete photometric reports or download .ies files for this product, visit the Lithonia Lighting WPX LED homepage. Tested in

 accordance with IESNA LM-79 and LM-80 standards

WPK2 LED

WPX3 LED
Mounting Height $=\mathbf{1 2}$ Feet.

May 3, 2023

Chelsea Huisman
City of Polk City
$1123^{\text {rd }}$ Street
Polk City, Iowa 50226

RE: Ace Hardware Site Plan
 Traffic Memo

The Ace Hardware project consists of the construction of a 15,380 square foot single story building to be utilized as a hardware store. The building will be constructed in one phase and sits on approximately 2.11 acres. The facility will have two entrances off Hickory Way and Willow Way which are private roadways owned and maintained by an association. These private drives funnel out to S . $3^{\text {rd }}$ Street which is a major collector roadway through Polk City. Using the tables in the ITE Trip Generation book, $11^{\text {th }}$ Edition, this site will generate the updated estimated AM peak, PM peak, and average daily traffic shown in the table below.

Land Use	ITE Code	Quantity	Unit	Average Daily Trips	AM Peak Trips	PM Peak Trips
Hardware/Paint Store	816	15.3	kSF	124	15	46
Total				124	15	46

Ace Hardware - Polk City
Traffic Memo
Trip Generation
5/3/2023

From ITE 11th Edition:

Hardware/Paint Store

Total

			Average Daily		AM peak		PM peak	
ITE Code	Area, ksf	\# of Units	Rate	Trips	Rate	Trips	Rate	Trips
816	15.3		8.07	124	0.92	15	2.98	46
				124		15		46

ACE HARDWARE

STORM WATER MANAGEMENT PLAN POLK CITY, IOWA

CDA PROJECT NO. 2212.847

CIVIL DESIGN ADVANTAGE
4121 NW URBANDALE DRIVE, URBANDALE, IA 50322
(515) 369-4400

PREPARED BY: CIVIL DESIGN ADVANTAGE, LLC PREPARED ON: APRIL 19, 2023
REVISED ON: MAY 02,2023
\qquad of \qquad Pages

SUBJECT: Stormwater Calculations DATE: 05/03/23 COMP. BY: \qquad OK'D BY: \qquad

Project Description:

Existing Site Conditions

The proposed site is located at 825 S . 3rd Street and contains 2.11 acres. The site was mass graded with Crossroads At The Lakes Plat 1 and is slated for commercial uses. Refer to the Storm Water Management Plan titled "Crossroads At The Lakes Plat 1" detailed analysis of the existing site conditions.

Proposed Site Conditions

Proposed site improvements include a commercial building, parking, and associated utilities. Stormwater for the entire property will be conveyed via overland flowage and storm sewer to an existing detention basin installed with Crossroads At The Lakes Plat 1. Refer to the Storm Water Management Plan titled "Crossroads At The Lakes Plat 1" detailed analysis of the post-developed site conditions of the surrounding area.

Storm Water Analysis:

Storm Sewer Analysis

Storm sewer pipes were designed to convey the 100-year post-developed storm event with overflow paths defined to provide routing for larger storm events. The Rational Method was used to determine the flow rate for each drainage area and the Manning's equation was used to size the pipes.

Detention Analysis

Refer to the Storm Water Management Plan titled "Crossroads At The Lakes Plat 1" detailed analysis of the detention calculations.

Detention Summary
DB 2 (Ex. Area= 6.62 AC - Proposed Area $=6.82 \mathrm{AC}$) (Refer to Appendix for Additional Calculations)

Rainfall Return Frequency (Yrs)	Existing Runoff, cfs	(Allowable Release), cfs $*$	Post-Developed Runoff Release, cfs	Plat 1 Curve Number	Actual Curve Number
5	9.00	46.82	45.14	89	87
100	27.84	105.65	79.09		

* Includes routing of all offsite areas associated with DB 2.

Composite Curve Number (CN) Calculations - C Soils

Drainge Area ID	Open Space CN	Open Space Area, SF	Impervious CN	Impervious Area, SF	Total Area, SF	Total Area, Acres	Composite CN
DB 2	74	135435	98	161645	297080	6.82	87

*Calcualtions show that the calculated composite curve number is below the assumed curve shown in the original report. Therefore, the detention provided within the basin is adequate for this site plan.

Assumptions:

* See attached Hydrologic Soil Map in the Appendix. For this analysis, Hydrologic Soil Group C will be used.
* Assumed a 10 minute time of concentration for storm sewer design.
* The runoff coefficients and curve numbers used to determine flow rates for the site are listed in the following tables.

Land Use or Surface Characteristics	C Soils
	$\frac{100-\mathrm{yr}}{0.55}$
Open Space - Good Condition	0.98

Cover Type	C Soils
Open Space - Good Condition	74
Impervious	98

Hydrologic Soil Group-Polk County, Iowa

Hydrologic Soil Group

Hydrologic Soil Group-Summary by Map Unit - Polk County, Iowa (IA153)				
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
108	Wadena loam, 0 to 2 percent slopes	B	0.4	0.8\%
108B	Wadena loam, 2 to 6 percent slopes	B	0.4	0.8\%
259	Biscay clay loam, 0 to 2 percent slopes	C/D	6.1	11.6\%
L107	Webster clay loam, Bemis moraine, 0 to 2 percent slopes	C/D	1.5	2.8\%
L168F	Hayden loam, Bemis moraine, 22 to 40 percent slopes	C	7.5	14.0\%
L236B	Lester loam, Bemis moraine, 2 to 6 percent slopes	C	26.4	49.6\%
L236C2	Lester loam, Bemis moraine, 6 to 10 percent slopes, moderately eroded	C	10.8	20.4\%
Totals for Area of Interest			53.1	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

\qquad Page \qquad of \qquad Pages

SUBJECT: Stormwater Calculations
DATE:
05/02/23 COMP. BY: \qquad OK'D BY: \qquad

Storm Sewer
 Post-Developed Composite C-factor Calculations

100-Year

Drainage Area ID	Lawn C-factor	Lawn Area, SF	Imperv. C-factor	Imperv. Area, SF	Total Area SF	Total Area Acres	Composite C-factor
DA 2	0.55	1,630	0.98	13,679	15,309	0.35	0.93
DA 3	0.55	531	0.98	7,809	8,340	0.19	0.95
DA 4	0.55	2,707	0.98	9,672	12,379	0.28	0.89
DA 5	0.55	2,280	0.98	-	2,280	0.05	0.55
DA 6	0.55	2,547	0.98	9,245	11,792	0.27	0.89
DA 7	0.55	-	0.98	6,160	6,160	0.14	0.98

PROJECT: Ace Hardware JOB NO. \qquad Page \qquad of \qquad Pages

SUBJECT: Stormwater Calculations
DATE: \qquad COMP. BY: GH OK'D BY: \qquad
Hydraulic Grade Line

Plan	Pipes		Inlets Results										
Summary		DOT	Inlet	FL-DOT		Calc	Cost	\geqslant	MyRepo	...			
Line No.	Line ID	Flow Rate	Line Size (Rise \times Span)	$\begin{aligned} & \text { Line } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Line } \\ & \text { Length } \end{aligned}$	Invert Elev. Down	Invert Elev. Up	Line	HGL Down	$\begin{aligned} & \text { HGL } \\ & \text { Up } \end{aligned}$	Minor Loss	HGL Junct	Dn Str Line No.
		(cfs)	(in)		(ft)	(ft)	(ft)	(\%)	(ft)	(ft)	(ft)	(ft)	
1	EX1	10.62	15	Cir	61.001	928.86	930.08	2.00	930.06	931.64*	1.06	932.70	Outfall
2	2	6.91	15	Cir	109.000	930.13	931.44	1.20	932.70	933.94*	0.49	934.44	1
3	3	3.93	15	Cir	223.000	931.49	932.38	0.40	934.44	935.26*	0.11	935.37	2
4	4	2.28	15	Cir	75.000	932.43	932.66	0.31	935.37	935.47*	0.05	935.52	3
5	5	3.71	12	Cir	46.000	930.18	930.64	1.00	932.70	933.12*	0.11	933.23	1
6	6	3.45	12	Cir	137.000	930.74	932.11	1.00	933.23	934.32*	0.04	934.37	5
7	7	1.26	8	Cir	63.001	932.21	932.84	1.00	934.37	934.95*	0.20	935.16	6

\qquad of \qquad Pages

SUBJECT: 100-Year Elevation DATE: 05/02/23 DESIGNED: \qquad GH CHECKED: \qquad

INTAKE CAPACITY CALCULATIONS

EQUATIONS

1. ORIFICE: $\quad Q=0.67 \mathrm{~A}_{\mathrm{g}}(2 \mathrm{gd})^{0.5}$ (SUDAS Equation $2 \mathrm{C}-3.12$)

WHERE - $Q=$ flow, cfs
$\mathrm{A}_{\mathrm{g}}=$ Clear opening of the grate, ft^{2}
DA 2 Runoff

| $Q=C$ | * ${ }^{*} A$ |
| :--- | :--- | :--- |
| $C=$ | 0.97 |
| $I=$ | 9.15 |
| $A=$ | 0.33 |
| $Q=$ | 2.93 |

$\mathrm{g}=$ gravitational constant ($32.16 \mathrm{ft} / \mathrm{s}^{2}$)
$\mathrm{d}=$ average depth across the grate, ft
2. WEIR:
$Q=3.0 \mathrm{Pd}^{1.5}$
(SUDAS Equation 2C-3.11)
WHERE - $\quad \mathrm{Q}=$ flow, cfs
$\mathrm{P}=$ Perimeter of the grate disregarding the side against the curb, ft
$\mathrm{d}=$ average depth across the grate, ft

CALCULATIONS

1. Solve for required head given flow and open area for casting using Orifice Equation:

LOCATION: ST-2
INPUT: $Q_{100}=2.93$ cfs (From Rational Equation)
$\mathrm{A}_{\mathrm{g}}=1.95$ sq.ft. (Open Area of Casting)
Required Depth at Grate: $\quad d=0.078 \mathrm{ft}$.
2. Solve for required head given flow and open perimeter of casting using Weir Equation:

LOCATION: ST-2
INPUT: $Q_{100}=2.93$ cfs (From Rational Equation)

$$
\mathrm{P}=5.86 \mathrm{ft} . \quad \text { (Open Perimeter of Casting) }
$$

Required Depth at Grate: $\quad \mathrm{d}=0.303 \mathrm{ft}$.

GOVERNING EQUATION: Weir Equation
Required Depth $=0.303 \quad \mathrm{ft}=4 \quad$ inches
The 100-year elevation is $934.87+0.30=935.17$
The 100-year elevation is less than the overflow elevation of 935.19 ; therefore, ponding depth ok.
\qquad of \qquad Pages

SUBJECT: 100-Year Elevation DATE: 05/02/23 DESIGNED: \qquad CHECKED: \qquad

INTAKE CAPACITY CALCULATIONS

EQUATIONS

1. ORIFICE: $\quad Q=0.67 \mathrm{~A}_{\mathrm{g}}(2 \mathrm{gd})^{0.5}$ (SUDAS Equation $2 \mathrm{C}-3.12$)

WHERE - $Q=$ flow, cfs
$\mathrm{A}_{\mathrm{g}}=$ Clear opening of the grate, ft^{2}
DA 3 Runoff

| $\mathrm{Q}=\mathrm{C}{ }^{*} \mathrm{I}^{*} \mathrm{~A}$ | |
| :--- | :--- | :--- |
| $\mathrm{C}=$ | 0.97 |
| $\mathrm{I}=$ | 9.15 |
| $\mathrm{~A}=$ | 0.19 |
| $\mathrm{Q}=$ | 1.69 |

$\mathrm{g}=$ gravitational constant ($32.16 \mathrm{ft} / \mathrm{s}^{2}$)
$\mathrm{d}=$ average depth across the grate, ft
2. WEIR:
$Q=3.0 \mathrm{Pd}^{1.5}$
(SUDAS Equation 2C-3.11)
WHERE - $\quad \mathrm{Q}=$ flow, cfs
$\mathrm{P}=$ Perimeter of the grate disregarding the side against the curb, ft
$\mathrm{d}=$ average depth across the grate, ft

CALCULATIONS

1. Solve for required head given flow and open area for casting using Orifice Equation:

LOCATION: ST-3
INPUT: $\mathrm{Q}_{100}=1.69$ cfs (From Rational Equation) $\mathrm{A}_{\mathrm{g}}=2.62$ sq.ft. (Open Area of Casting)

Required Depth at Grate: $\quad d=0.014 \mathrm{ft}$.
2. Solve for required head given flow and open perimeter of casting using Weir Equation:

LOCATION: ST-3
INPUT: $Q_{100}=1.69$ cfs (From Rational Equation) $\mathrm{P}=9.91 \mathrm{ft} . \quad$ (Open Perimeter of Casting)

Required Depth at Grate: $\quad \mathrm{d}=0.148 \quad \mathrm{ft}$.

GOVERNING EQUATION: Weir Equation
Required Depth = $0.148 \mathrm{ft}=2$ inches
The 100-year elevation is $936.02+0.15=936.17$
The 100-year elevation is less than the overflow elevation of 936.80 ; therefore, ponding depth ok.
\qquad of \qquad Pages

SUBJECT: 100-Year Elevation DATE: 05/02/23 DESIGNED: \qquad CHECKED: \qquad

INTAKE CAPACITY CALCULATIONS

EQUATIONS

1. ORIFICE: $\quad Q=0.67 \mathrm{~A}_{\mathrm{g}}(2 \mathrm{gd})^{0.5}$ (SUDAS Equation $2 \mathrm{C}-3.12$)

WHERE - $Q=$ flow, cfs
$\mathrm{A}_{\mathrm{g}}=$ Clear opening of the grate, ft^{2}
DA 4 Runoff

$\mathrm{Q}=\mathrm{C} * \mathrm{I}^{*} \mathrm{~A}$	
$\mathrm{C}=$	0.89
$\mathrm{I}=$	9.15
$\mathrm{~A}=$	0.29
$\mathrm{Q}=$	2.36

$\mathrm{g}=$ gravitational constant ($32.16 \mathrm{ft} / \mathrm{s}^{2}$)
$\mathrm{d}=$ average depth across the grate, ft
2. WEIR:
$\mathrm{Q}=3.0 \mathrm{Pd}^{1.5}$
(SUDAS Equation 2C-3.11)
WHERE - $\quad \mathrm{Q}=$ flow, cfs
$\mathrm{P}=$ Perimeter of the grate disregarding the side against the curb, ft
$\mathrm{d}=$ average depth across the grate, ft

CALCULATIONS

1. Solve for required head given flow and open area for casting using Orifice Equation:

LOCATION: ST-4
INPUT: $Q_{100}=2.36$ cfs (From Rational Equation)
$\mathrm{A}_{\mathrm{g}}=2.62$ sq.ft. (Open Area of Casting)
Required Depth at Grate: $\quad d=0.028 \mathrm{ft}$.
2. Solve for required head given flow and open perimeter of casting using Weir Equation:

LOCATION: ST-4
INPUT: $\quad Q_{100}=2.36$ cfs (From Rational Equation) $\mathrm{P}=9.91 \mathrm{ft} . \quad$ (Open Perimeter of Casting)

Required Depth at Grate: $\quad \mathrm{d}=0.185 \mathrm{ft}$.

GOVERNING EQUATION: Weir Equation
Required Depth = $0.185 \mathrm{ft}=2$ inches
The 100-year elevation is $936.44+0.18=936.62$
The 100-year elevation is less than the overflow elevation of 936.92 ; therefore, ponding depth ok.

ST-5

Nyloplast 18" Dome Grate Inlet Capacity Chart

100-Year Elevation $=935.65+0.06=935.71$

Nyloplast
 3130 Verona Avenue • Buford, GA 30518

(866) 888-8479 / (770) 932-2443 • Fax: (770) 932-2490
© Nyloplast Inlet Capacity Charts June 2012

ST-6

Nyloplast 18" Dome Grate Inlet Capacity Chart

$100-$ Year Elevation $=936.00+0.08=936.08$

Nyloplast
 3130 Verona Avenue • Buford, GA 30518

(866) 888-8479 / (770) 932-2443 • Fax: (770) 932-2490
© Nyloplast Inlet Capacity Charts June 2012

APPENDIX

CROSSROADS AT THE LAKES PLAT 1

STORM WATER MANAGEMENT PLAN
 POLK CITY, IOWA

CDA PROJECT NO. 1707.369

CIVIL DESIGN ADVANTAGE
3405 SE Crossroads Drive, Suite G GRIMES, IOWA 50111
(515) 369-4400

PREPARED BY: CIVIL DESIGN ADVANTAGE, LLC
PREPARED ON: JULY 28, 2017
REVISED ON: AUGUST 15, 2017
REVISED ON: OCTOBER 10, 2017

Project Description:

Existing Site Conditions

Crossroads at the Lakes Plat 1 is located directly east of the W Bridge Road and S 3rd Street Intersection in Polk City, lowa. The site currently consists of woodland, open space and a single family home along the west side of the site. The property is slated for single family residential, townhomes and commercial uses. An existing high point bisects the site from the southeast corner of the property to the northwest corner of the property forcing storm water associated with DB 1 EX to discharge to the north and east and storm water associated with DB 2 EX to discharge to the south and west. Refer to the attached time of concentration, existing drainage map and Hydraflow Hydrographs analysis for detailed analysis of the existing site conditions.

Proposed Site Conditions

Proposed site improvements consist of 1 commercial lot to be developed at a future date, 38 townhome lots, roadways and associated utilities. Proposed grades generally follow existing drainage patterns throughout the overall site. Storm water will be collected in a series of low points along the proposed private streets and in the rear yards of the townhome lots. One dry-bottom detention basin (POND 2) will be constructed with this plat to provided detention for the townhomes and commercial lot associated with DB 2.

Offsite Conditions

Refer to the Storm Water Management Plan titled "Detention Pond Drainage Calculations for Bridge Pointe" dated July 2, 2014 for calculations regarding the revised detention basin located on the west side of S. 3rd Street

Storm Water Analysis:

Detention Analysis

The existing site was analyzed in order to ensure that the on-site 5 - and 100-year post-developed release rates of the contributing drainage areas are at or below the on-site 5 - and 100-year existing release rates respectively. Off-site flows are allowed to pass-through the detention basin without being detained, however, the detention basin (POND 2) will be restricted as much as possible in order to reduce the amount of flow contributing to future downstream drainage basins. The ultimate outlet of the site at full-build out will be restricted by an existing 36 " RCP at the west end of Whispering Pine Ave along the eastern property boundary of the overall Crossroads at the Lakes property. The current analysis of POND 2 will provide detention for the proposed townhomes and commercial lot associated with DB 2. POND 2 will need to be re-analyzed as the future development to the south occurs. Composite curve numbers have been calculated for post-developed drainage areas associated with DB 2.

Detention associated with DB 1 will be provided in a future plat. The existing area was analyzed in order to ensure that the on-site 5 - and 100-year post-developed release rates of the contributing drainage areas are at or below the on-site 5 - and 100-year existing release rates for the proposed condition. DB 1 will be re-analyzed in the future once the detention basin associated with DB 1 has been constructed. Composite curve numbers have been calculated for post-developed drainage areas associated with DB 1.

DB 1 UNDISTURBED is undisurbed area within the Crossroads at the Lakes Plat 1 property that was not included in calculations to determine existing or post-developed release rates.

PROJECT: Crossroads at the Lakes Plat 1 JOB NO. \qquad Page \qquad of \qquad Pages

SUBJECT: Stormwater Calculations DATE: 10/10/17 COMP. BY: \qquad OK'D BY: \qquad

Storm Water Analysis:

Detention Summary

DB 1 (EXISTING AREA = 5.28 AC - PROPOSED AREA = 5.08 AC)

Rainfall Return Frequency (Yrs)	Existing Runoff, cfs	(Allowable Release), cfs	Post-Developed Runoff Release, cfs *
5	4.11	4.11	4.51
100	12.86	12.86	11.62

* Detention will be provided for DB 1 in a future plat. No temporary detention will be provided for the 5year storm in order to prevent a point discharge into the existing wooded area.

DB 2 (EXISTING AREA = 6.62 AC - PROPOSED AREA = 6.82 AC)

Rainfall Return Frequency (Yrs)	Existing Runoff, cfs	(Allowable Release), cfs ${ }_{*}$	Post-Developed Runoff Release, cfs
5	9.00	46.82	45.14
100	27.84	105.65	79.09

* Includes routing of all offsite areas associated with DB 2.

Detention Basin Summary

	Pool WSE	$100-y r$ WSE Elevation	Detention Overflow Elevation	Detention Freeboard, Feet	100 -year Release Rate, cfs	$100-y e a r$ detention volume, cf	Pond Depth, Feet
POND 2	901.00	911.95	914.10	2.15	79.09	61,879	13.10

PROJECT: Crossroads at the Lakes Plat 1 JOB NO. \qquad Page \qquad of \qquad Pages
SUBJECT: Stormwater Calculations DATE: 10/10/17 COMP. BY: \qquad OK'D BY: \qquad

Assumptions:

* See attached Hydrologic Soil Map in this section. For this analysis, Hydrologic Soil Group C will be used.
* Assumed a 15 minute time of concentration for post-developed detention analysis.
* Assumed a 10 minute time of concentration for storm sewer analysis.

Cover Type	C Soils	
Open Space - Good Condition	74	
Woods - Good Condition	70	
Impervious	98	
Commercial	94	
Land Use or Surface Characteristics	C Soils	C Soils
	5-yr	100-yr
Impervious	0.95	0.98
Lawns	0.35	0.55
Commercial	0.85	0.90

Comment Response Letter

Ace Hardware Site Plan
May 11, 2023

1. The west elevation, with only 56% brick, does not meet the 60% requirement. Revise architectural elevations to meet the 60% brick requirement.

- See attached elevations.

2. Provide additional details on proposed signage to illustrate the area in square feet that each proposed sign will occupy on the building face. Based on the building length along S. $3^{\text {rd }}$ Street, the combined total of all signage cannot exceed 100 SF , including both the ACE sign and product signage on the front of the building.

- Signage has been provided on the architectural drawings.

3. Show and label all exterior building-mounted wall lights and soffit lights on the architectural elevations.

- See attached elevations.

4. Label materials, including color, of the trash enclosure and screening gate on the north elevation.

- See attached elevations.

5. Revise added hydrant location to be located outside the building fall zone (1.5 times the height of the building).

- Hydrant has been relocated.

6. Open space plantings appear to be calculated incorrectly. 13,810 SF of required open space, when divided by 3,000 , equates to 4.6 "units" which results in a requirement for 10 trees and 28 shrubs rather than 11 trees and 18 shrubs as noted on the plan (Based on 2 trees and 6 shrubs per "unit").

- Item has been modified.

7. The Landscape plan provides for a total of 54 trees, however only 13 of those trees are located outside required buffers to provide shade for the parking lot. Provide a separate plan demonstrating that the 32 trees and 40 shrubs notes as "Buffer Trees" will actually fulfill the Type "B" buffer requirement. This will ensure that required buffer trees are not "double counted" as both open space and buffer trees.

- All calculations have been broken out to show that we are planting a total of $\mathbf{6 0}$ trees to meet the requirement.

8. Provide shrubs on the south side of the parking lot, west of the Hickory Way driveway, to provide screening for the townhomes on the south, particularly since the berm is only one foot high in this area.

- Additional shrubs have been provided.

9. Provide details for proposed monument sign, including materials, dimensions, and type of lighting. If the monument sign will have uplighting, show lighting and required landscape screening on the landscape plan.

- There is no lighting on the monument sign. A detail has been provided in the architectural drawings.

10. On photometric sheet, mark up cut sheets for all lighting fixtures, specifying the wattage, mounting height, and attachments as applicable. Max wattage is as follows:
a. Parking Lot: 70 watt LED max
b. Wall Packs: 28 watt LED max
c. Soffit Lights: 17.5 watt LED max, no visible bulbs

- See attached lighting information

[^0]: Jenny Coffin - City Clerk

